|
NUITFRANCE - Bibliothèque - Fiche bibliographique
Bibliothèque
Cette rubrique recense :
- de la documentation sur les différents thèmes de la nuit (vie nocturne, pollution lumineuse, pollution sonore, ...).
- les données informatiques relatives à l'éclairage public digitalisées et mises à dispositions en open data par certaines communes,
Fil d'Ariane : Accueil >> Bibliothèque >> Fiche bibliographique
Permalien : http://www.nuitfrance.fr/?page=donneesdoc&partie=fiche-bibliographique
Quelques tags associés : [ DOCUMENTATION, PUBLICATIONS, LITTÉRATURE, CONNAISSANCES, LITTÉRATURE GRISE, ARTICLES DE PRESSE, ARTICLES SCIENTIFIQUES, TEXTES JURIDIQUES, PLANS ET PROGRAMMES, JURISPRUDENCE, DÉCRETS, THÈSES ]
► Fiche bibliographique
Afficher la fiche pour le document :
Document " The UV visual world of fishes: a review "
Type de document : |
Articles de revue scientifique |
Thème du document : |
Nuit naturelle - Sens et orientation du vivant |
Groupe biologique : |
Poissons et invertébrés aquatiques |
Auteur(s) : |
LOSEY G.S. CRONIN T.W. GOLDSMITH T.H. HYDE D. MARSHALL N.J. MCFARLAND N. TERRASSON F.
|
Date de publication : |
Mai 1999 |
Langue : |
English/Anglais |
Nom du périodique : |
Journal of Fish Biology |
Précisions : |
Volume 54. Numéro 5. Pages 921–943 |
Lien contenu/source : |
http://onlinelibrary.wiley.com/doi/10.1111/j.1095-... |
DOI : |
10.1111/j.1095-8649.1999.tb00848.x |
Mots-clefs : |
Behaviour Coloration Evolution Opsin Ultraviolet Vision
|
Citation courte : |
Losey et al. (1999) |
Citation complète (format NuitFrance) : |
LOSEY G.S., CRONIN T.W., GOLDSMITH T.H., HYDE D., MARSHALL N.J., MCFARLAND N. & TERRASSON F. (1999). The UV visual world of fishes: a review. Journal of Fish Biology. Volume 54. Numéro 5. Pages 921–943. |
Résumé du document : |
|
Ultraviolet-A radiation (320–400 nm) is scattered rapidly in water. Despite this fact, UV is present in biologically useful amounts to at least 100 m deep in clear aquatic environments. Discovery of UV visual pigments with peak absorption at around 360 nm in teleost cone photoreceptors indicates that many teleost fishes may be adapted for vision in the UV range. Considering the characteristic absorption curve for visual pigments, about 18% of the downwelling light that illuminates objects at 30-m depth would be available to UV-sensitive cones. Strong scattering of UV radiation should produce unique imaging conditions as a very bright UV background in the horizontal view and a marked veiling effect that, with distance, obscures an image. Many teleosts have three, or even four, classes of cone cells mediating colour vision in their retina and one can be sensitive to UV. These UV-sensitive cones contain a visual pigment based on a unique opsin which is highly conserved between fish species. Several powerful methods exist for demonstration of UV vision, but all are rather demanding in terms of technique and equipment. Demonstration that the eye lacks UV-blocking compounds that are present in many fish eyes is a simpler method that can indicate the possibility of UV vision. The only experimental evidence for the use of UV vision by fishes is connected to planktivory: detection of UV-opaque objects at close range against a bright UV background is enhanced by the physical properties of UV light. Once present, perhaps for the function of detecting food, UV vision may well be co-opted through natural selection for other functions. Recent discovery that UV vision is critically important for mate choice in some birds and lizards is a strong object lesson for fish ecologists and behaviourists. Other possible functions amount to far more than merely adding a fourth dimension to the visible spectrum. Since UV is scattered so effectively in water, it may be useful for social signalling at short range and reduce the possibility of detection by other, illegitimate, receivers. Since humans are blind to UV light, we may be significantly in error, in many cases, in our attempts to understand and evaluate visual aspects of fish behaviour. A survey of the reflectance properties of skin pigments in fishes reveals a rich array of pigments with reflectance peaks in the UV. For example, the same yellow to our eyes may comprise two perceptually different colours to fish, yellow and UV-yellow. It is clearly necessary for us to anticipate that many fishes may have some form of UV vision.
|
Saisie sur NuitFrance par : |
Rosor |
Saisie sur NuitFrance en : |
Septembre 2015 |
Identifiant NuitFrance : |
NF-BIBLI-1340 |
Permalien de la fiche NuitFrance : |
http://www.nuitfrance.fr/?page=donneesdoc&partie=fiche-bibliographique&id_doc=1340 |
|
|